“D-cell hypothesis” of schizophrenia: Possible theory for mesolimbic dopamine hyperactivity
نویسنده
چکیده
The author proposes a new “D-cell hypothesis” for mesolimbic dopamine (DA) hyperactivity of schizophrenia. The “D-cell” is defined as “non-monoaminergic aromatic L-amino acid decarboxylase (AADC)-containing cell”. D-cells produce trace amines, such as tyramine and β-phenylethylamine, and may also take up amine precursors and convert them to amines by decarboxylation. Trace amine-associated receptor, type 1 (TAAR1), a subtype of trace amine receptors, has a large number of ligands, including tyramine, βphenylethylamine and methamphetamine, that influence on human mental states, and is now regarded to be a target receptor for novel neuroleptics. Recent studies revealed that the reduced stimulation of TAAR1 on DA neurons in the midbrain ventral tegmental area (VTA) increased firing frequency of VTA DA neurons. The author and her colleagues reported the decrease of D-neurons in the striatum and nucleus accumbens of postmortem brains of patients with schizophrenia. This may imply the decrease of trace amine synthesis, resulting the reduced stimulation of TAAR1 on terminals of midbrain VTA DA neurons, and may lead to mesolimbic DA hyperactivity in schizophrenia. The decrease of striatal D-neurons of postmortem brains of schizophrenia is supposed to be due to neural stem cell dysfunction in the subventricular zone of lateral ventricle. The decrease of striatal D-neurons and acts of TAAR1 signals on DA neurons might explain mesolimbic DA hyperactivity of schizophrenia.
منابع مشابه
NSC-induced D-neurons are decreased in striatum of schizophrenia: Possible cause of mesolimbic dopamine hyperactivity
Neural stem cell (NSC) hypofunction is an etiological hypothesis of schizophrenia. Although dopamine (DA) dysfunction is also a widely accepted hypothesis, molecular background of mesolimbic DA hyperactivity has not yet been well known. Here, the author proposes “D-cell hypothesis”, accounting for molecular basis of mesolimbic DA hyperactivity of schizophrenia, by NSC hypofunction and decrease ...
متن کاملD-Cell Hypothesis: Pathogenesis of Mesolimbic Dopamine Hyperactivity of Schizophrenia
In the present article, the author proposes a new “D-cell hypothesis” for mesolimbic dopamine (DA) hyperactivity of schizophrenia, of which relevant molecular mechanism has not yet been known. The “D-cell” is defined as “the nonmonoaminergic aromatic L-amino acid decarboxylase (AADC)-containing cell”. The D-cell contains AADC but not dopaminergic nor serotonergic. D-cells produce trace amines, ...
متن کاملWhy D-neuron? Importance in schizophrenia research
Recent pharmacological discovery on trace amineassociated receptor, type 1(TAAR1) has emphasized importance of trace amines in pathogenesis of psychoses, such as schizophrenia. TAAR1 has many ligands, including tyramine, β-phenylethylamine (PEA), amphetamines, and 3’-iodothyronamine. Socalled D-neurons are putative producer of trace amines, endogenous ligands of TAAR1. The D-neuron is defined “...
متن کاملIncreased synaptic dopamine function in associative regions of the striatum in schizophrenia.
CONTEXT A long-standing version of the dopamine hypothesis of schizophrenia postulates that hyperactivity of dopaminergic transmission at D(2) receptors in the limbic striatum is associated with the illness and that blockade of mesolimbic D(2) receptors is responsible for the antipsychotic action of D(2) receptor antagonists. OBJECTIVE To localize dopaminergic hyperactivity within the striatu...
متن کاملClinical Efficacy of Antipsychotic Drugs in the Treatment of Schizophrenia
We describe in schizophrenia the alterations of classical neurotransmitters and neuropeptides in the mesolimbic system, the hippocampus and the prefrontal cortex. The susceptibility genes, which encode dopamine hyperactivity and glutamate and GABA hyperactivity, are described. Using a neural network in the mesolimbic system, the coherence between the risk genes and the cellular mechanisms is de...
متن کامل